Data Skeptic

Data Skeptic

Australia

Data Skeptic alternates between short mini episodes with the host explaining concepts from data science to his non-data scientist wife, and longer interviews featuring practitioners and experts on interesting topics related to data, all through the eye of scientific skepticism.

Episodes

[MINI] Dropout  

Deep learning can be prone to overfit a given problem. This is especially frustrating given how much time and computational resources are often required to converge. One technique for fighting overfitting is to use dropout. Dropout is the method of randomly selecting some neurons in one's network to set to zero during iterations of learning. The core idea is that each particular input in a given layer is not always available and therefore not a signal that can be relied on too heavily.

 

The Police Data and the Data Driven Justice Initiatives  

In this episode I speak with Clarence Wardell and Kelly Jin about their mutual service as part of the White House's Police Data Initiative and Data Driven Justice Initiative respectively.

The Police Data Initiative was organized to use open data to increase transparency and community trust as well as to help police agencies use data for internal accountability. The PDI emerged from recommendations made by the Task Force on 21st Century Policing.

The Data Driven Justice Initiative was organized to help city, county, and state governments use data-driven strategies to help low-level offenders with mental illness get directed to the right services rather than into the criminal justice system.

The Library Problem  

We close out 2016 with a discussion of a basic interview question which might get asked when applying for a data science job. Specifically, how a library might build a model to predict if a book will be returned late or not.

 
2016 Holiday Special  

Today's episode is a reading of Isaac Asimov's Franchise.  As mentioned on the show, this is just a work of fiction to be enjoyed and not in any way some obfuscated political statement.  Enjoy, and happy holidays!

[MINI] Entropy  

Classically, entropy is a measure of disorder in a system. From a statistical perspective, it is more useful to say it's a measure of the unpredictability of the system. In this episode we discuss how information reduces the entropy in deciding whether or not Yoshi the parrot will like a new chew toy. A few other everyday examples help us examine why entropy is a nice metric for constructing a decision tree.

MS Connect Conference  

Cloud services are now ubiquitous in data science and more broadly in technology as well. This week, I speak to Mark Souza, Tobias Ternström, and Corey Sanders about various aspects of data at scale. We discuss the embedding of R into SQLServer, SQLServer on linux, open source, and a few other cloud topics.

Causal Impact  

Today's episode is all about Causal Impact, a technique for estimating the impact of a particular event on a time series. We talk to William Martin about his research into the impact releases have on app and we also chat with Karen Blakemore about a project she helped us build to explore the impact of a Saturday Night Live appearance on a musician's career.

Martin's work culminated in a paper Causal Impact for App Store Analysis. A shorter summary version can be found here. His company helping app developers do this sort of analysis can be found at crestweb.cs.ucl.ac.uk/appredict/.

[MINI] The Bootstrap  

The Bootstrap is a method of resampling a dataset to possibly refine it's accuracy and produce useful metrics on the result. The bootstrap is a useful statistical technique and is leveraged in Bagging (bootstrap aggregation) algorithms such as Random Forest. We discuss this technique related to polling and surveys.

[MINI] Gini Coefficients  

The Gini Coefficient (as it relates to decision trees) is one approach to determining the optimal decision to introduce which splits your dataset as part of a decision tree. To pick the right feature to split on, it considers the frequency of the values of that feature and how well the values correlate with specific outcomes that you are trying to predict.

Unstructured Data for Finance  

Financial analysis techniques for studying numeric, well structured data are very mature. While using unstructured data in finance is not necessarily a new idea, the area is still very greenfield. On this episode,Delia Rusu shares her thoughts on the potential of unstructured data and discusses her work analyzing Wikipedia to help inform financial decisions.

Delia's talk at PyData Berlin can be watched on Youtube (Estimating stock price correlations using Wikipedia). The slides can be found here and all related code is available on github.

[MINI] AdaBoost  

AdaBoost is a canonical example of the class of AnyBoost algorithms that create ensembles of weak learners. We discuss how a complex problem like predicting restaurant failure (which is surely caused by different problems in different situations) might benefit from this technique.

Open Data Science Conference Santa Clara Meetup Announcement  

Kyle will be attending the Open Data Science Conference West in Santa Clara, November 4-6, 2016.

We're going to have an informal meetup on Saturday at 7pm at The Bourbon Pub (4900 Marie P DeBartolo Way).

There's no formal presentation, this is just a casual meetup. We'll congregate around the bar area. If you're attending the conference or simply in the area, drop by and say hello!

Stealing Models from the Cloud  

Platform as a service is a growing trend in data science where services like fraud analysis and face detection can be provided via APIs. Such services turn the actual model into a black box to the consumer. But can the model be reverse engineered?

Florian Tramèr shares his work in this episode showing that it can. The paper Stealing Machine Learning Models via Prediction APIs is definitely worth your time to read if you enjoy this episode. Related source code can be found in https://github.com/ftramer/Steal-ML.

[MINI] Calculating Feature Importance  

For machine learning models created with the random forest algorithm, there is no obvious diagnostic to inform you which features are more important in the output of the model. Some straightforward but useful techniques exist revolving around removing a feature and measuring the decrease in accuracy or Gini values in the leaves. We broadly discuss these techniques in this episode.

NYC Bike Share Rebalancing  

As cities provide bike sharing services, they must also plan for how to redistribute bicycles as they inevitably build up at more popular destination stations. In this episode, Hui Xiong talks about the solution he and his colleagues developed to rebalance bike sharing systems.

[MINI] Random Forest  

Random forest is a popular ensemble learning algorithm which leverages bagging both for sampling and feature selection. In this episode we make an analogy to the process of running a bookstore.

Election Predictions  

Jo Hardin joins us this week to discuss the ASA's Election Prediction Contest. This is a competition aimed at forecasting the results of the upcoming US presidential election competition. More details are available in Jo's blog post found here.

You can find some useful R code for getting started automatically gathering data from 538 via Jo's github and official contest details are available here. During the interview we also mention Daily Kos and 538.

[MINI] F1 Score  

The F1 score is a model diagnostic that combines precision and recall to provide a singular evaluation for model comparison.  In this episode we discuss how it applies to selecting an interior designer.

Urban Congestion  

Urban congestion effects every person living in a city of any reasonable size. Lewis Lehe joins us in this episode to share his work on downtown congestion pricing. We explore topics of how different pricing mechanisms effect congestion as well as how data visualization can inform choices.

You can find examples of Lewis's work at setosa.io. His paper which we discussed during the interview isDistance-dependent congestion pricing for downtown zones.

On this episode, we discuss State of California data which can be found at pems.dot.ca.gov.

[MINI] Heteroskedasticity  

Heteroskedasticity is a term used to describe a relationship between two variables which has unequal variance over the range.  For example, the variance in the length of a cat's tail almost certainly changes (grows) with age.  On the other hand, the average amount of chewing gum a person consume probably has a consistent variance over a wide range of human heights.

We also discuss some issues with the visualization shown in the tweet embedded below.

0:00/0:00
Video player is in betaClose