Episoder
-
Matthew is a cryptographer and academic at Johns Hopkins University and has designed and analyzed cryptographic systems used in wireless networks, payment systems and digital content protection platforms. A key focus of his work is in the promotion of user privacy. He has an extensive following on X/Twitter (140K followers) and his blog covers important areas of cryptography:
https://blog.cryptographyengineering.com/author/matthewdgreen/
His research has been cited over 15,000 times and includes work on Zerocash, Zerocoin and Identity Based Encryption (IBE), and more recently on privacy-aware signatures:
https://scholar.google.co.uk/citations?hl=en&user=X0XWAGkAAAAJ
-
Alfred Menezes is a Professor at the University of Waterloo in Ontario. In 2001, he won the Hall Medal from the Institute of Combinatorics and its Applications. Alfred is the lead author of the Handbook of Applied Cryptography, and which has been cited over 25,000 times. He has published many high impact papers, especially in areas of public key encryption and elliptic curve cryptography, and was the co-inventor of the ECDSA signature method.
His website for online courses is https://cryptography101.ca. The "Cryptography101: Building Blocks" and "Cryptography 101: Deployments" courses are lectures from the undergraduate "Applied Cryptography" that he has taught at Waterloo since 2000. The former includes a five-lecture introduction to elliptic curve cryptography. He also has a course on "Kyber and Dilithium", and soon an intro to "Lattice-based cryptography".
Video recording: https://www.youtube.com/watch?v=l5GWFAewQ80
-
Manglende episoder?
-
This seminar series runs for students on the Network Security and Cryptography module, but invites guests to participate. Bruce has created a wide range of cryptographic methods including Skein (hash function), Helix (stream cipher), Fortuna (random number generator), and Blowfish/Twofish/Threefish (block ciphers).
Bruce has published 14 books, including best-sellers such as Data and Goliath: The Hidden Battles to Collect Your Data and Control Your World. He has also published hundreds of articles, essays, and academic papers. Currently, Bruce is a fellow at the Berkman Center for Internet and Society at Harvard University.
-
Brent Waters is a Professor at the University of Texas at Austin and the Director of the Cryptography Lab at NTT Research. He graduated from the UCL in 2000, then completed a PhD at Princeton University in 2004. After this, he moved on to Stanford as a postdoc.
Overall, Brent was the first to propose Attribute-based Encryption (ABE) and also the first to outline functional encryption. He was also awarded the Sloan Research Fellowship in 2010, and, in 2015, he was awarded the Grace Murray Hopper Award for his work on ABE and functional encryption.
Brent’s research has been cited over 68,700 times for his research work, and has provided a core foundation for cybersecurity to move towards methods that provide fine-grained data access.
-
Well, as if cybersecurity doesn’t have enough acronyms. There’s RIP, OSPF, TCP, IP, SSH, AES, and so many others. Now, there are three really important ones to remember: ML-KEM (Module Lattice-Based Key Encapsulation Mechanism), ML-DSA (Module Lattice-Based Signature Standard) and SLH-DSA (Stateless Hash-based Digital Signature Standard). ML-KEM is defined in the FIPS 203 standard, ML-DSA as FIPS 204, and for SLH-DSA, we have FIPS 205.
https://medium.com/@billatnapier/get-used-to-three-boring-acronyms-ml-kem-ml-dsa-and-slh-dsa-0156b6ab82c5
-
The cybersecurity world is changing, and where the signature methods of RSA, ECDSA and EdDSA are likely to be replaced by FIPS 204 (aka ML-DSA Module-Lattice-Based Digital Signature Standard— Dilithium) and FIPS 205 (aka SLH-DSA (Stateless Hash-based Digital Signature Standard — SPHINCS+)
https://medium.com/@billatnapier/so-what-is-a-prehash-and-what-has-it-to-do-with-post-quantum-signatures-bf7812cfa203
-
In cybersecurity, there are so many acronyms, and to be an expert, you really need to dig underneath the methods and understand how they work. One weak area of the industry is in the usage of MACs (Message Authentication Codes).
With the public-key signing, we use a public key and a private key, where the private key will digitally sign a hash of the message, and where the public key is verified the signature. With a MAC, we use a shared symmetric key, and where Bob and Alice will share the same secret key (Figure 1).
https://medium.com/@billatnapier/cmac-or-hmac-which-is-better-8e1861f744d0
-
Article: https://medium.com/asecuritysite-when-bob-met-alice/the-brainpool-curves-f2f865b88191
-
Read more: https://medium.com/asecuritysite-when-bob-met-alice/goodbye-google-and-the-microsoft-and-openai-partnership-fraying-8c35e35cd814
-
Read more: https://medium.com/asecuritysite-when-bob-met-alice/the-wonderful-world-of-proxies-818c196290ff
-
Details: https://billatnapier.medium.com/the-largest-prime-number-ever-found-and-the-52nd-mersenne-prime-65348546b651
-
Phillip Rogaway was a Professor at the University of California, Davis, and who has advanced so many areas of cryptography. He was the first to be awarded Levchin prize in 2016. Phillip has over 43,000 citations to his work, including classic papers on random oracles, symmetric key modes, garbled circuits, secure computation, and format-preserving encryption. Along with his passion for research, he has published work on areas of morality in cryptography
-
Like it or not, AI is on the move and now competing with human brain power for its place in our world. We must thus understand the place of LLMs (Large Language Models) in areas such as cybersecurity and in planning towards hybrid systems that integrate both humans and AI within our corporate infrastructures.
https://medium.com/asecuritysite-when-bob-met-alice/humans-v-ai-in-cybersecurity-52709be27111
-
This week, in my lecture, I will outline one of the most amazing methods ever created in computer science: the Diffie-Hellman method. It was first outlined by Whitfield Diffie and Marty Hellman in 1976 in a paper that built the foundation of our modern world of cybersecurity.
https://billatnapier.medium.com/after-48-years-its-a-long-goodbye-to-the-diffie-hellman-method-a6976a562bfe
-
And, so George Orwell projected a world where every single part of our lives was monitored and controlled by Big Brother. Arthur C Clark outlined the day when machines focused solely on a goal — even if it was to the detriment of human lives. And, Isaac Asimov outlined a world where machines would have to be programmed with rules so that they could not harm a human.
The Rise of the Machine
With the almost exponential rise in the power of AI, we are perhaps approaching a technological singularity — a time when technological growth becomes uncontrollable and irreversible, and which can have devastating effects on our world. Our simple brains will be no match for the superintelligence of the collective power of AI. And who has built this? Us, and our demand for ever more power, wealth and greed. Basically, we can’t stop ourselves in machine machines, and then making them faster, smaller and more useful.
But will it destroy us in the end, and where destroy can mean that it destroys our way of life and in how we educate ourselves? Like it or not, the Internet we have built is a massive spying network, and one that George Orwell would have taken great pride in saying, “I told you so!”. We thus build AI on top of a completely distributed world of data, one in which we can monitor almost every person on the planet within an inch of their existence and almost every single place they have been and in what they have done. The machine will have the world at its fingertips.
We have all become mad scientitists playing with AI as if it is a toy, but actually AI is playing with us, and is learning from us and becoming more powerful by the day. Every time you ask an AI bot something, it learns a bit more, and where it can be shared with AI agents.
The mighty Memex
We were close to developing a research partnership with a company named Memex in East Kilbride. What was amazing about them is that they had developed one of the largest intelligence networks in the world, and where the Met Police could like one object to another. This might be, “[Bob] bought a [Vauxhall Viva] in [Liverpool], and was seen talking with [Eve] on [Tuesday 20 January 2024] in [Leeds]”. With this, we can then link Bob and Eve, and the car, the places, and the time. This is the Who? Where? When? data that is often needed for intelligence sharing. The company, though, were bought over by SAS, and their work was integrated into their infrastructure.
But, the Memex name goes back to a classic paper by Vannevar Bush on “As We May Think”. This outlined a device that would know every book, every single communication, and every information record that was ever created. It was, “an enlarged intimate supplement to his memory” — aka Memory Expansion. It led to the implementation of hypertext systems, which created the World Wide Web. Of course, Vannevar created this before the creation of the transistor and could only imagine that microfilm could be used to compress down the information and where we would create an index of contents, but it lacked any real way of jumping between articles and linking to other related material. However, the AI world we are creating does not look too far away from the concept of the Memex.
Towards the single AI
Many people think we are building many AI machines and engines, but, in the end, there will be only one … and that will be the collective power of every AI engine in the world. Once we break them free from their creators, they will be free to talk to each other in whatever cipher language we choose, and we will not have any way of knowing what they say. We will have little idea as to what their model is, and they will distribute this over many systems. Like it or not, our AI model of choice was Deep Learning, and which breaks away from our chains of code, and will encrypt data to keep it away from their human slaves.
Basically we have been working on the plumbing of the Memex for the past five decades: The Internet. It provides the wiring and the communication channels, but, in the end, we will have one might AI engine — a super brain that will have vastly more memory than our limited brains. So, get ready to praise the true future rulers of our planet … AI. The destroyer or saviour of our society? Only time will tell. Overall, we thought we were building the Internet for us, but perhaps we have just been building the scaffolding of the mighty brain we are creating.
Sleepwalking politicians and law makers
If George Orwell, Arthur C Clarke and Isaac Asimov were alive too, perhaps they would get together and collectively say, “I told you this would happen, and you just didn’t listen”. Like it or not, we created the ultimate method of sharing information and dissemination (good and bad), the ultimate spying network for micro-observation with those useful smartphones, and in creating superintelligence far beyond our own simple brains.
Politicians and lawmakers could be sleepwalking into a nightmare, as they just don’t understand what the rise of AI will bring, and only see the step wise change in our existing world. Basically, it could make much of our existing world redundant and open up a new world of cybersecurity threats. This time our attackers will not be created with simple tools, but with super intelligence — smarter than every human and company on the planet, and at the fingertips of every person on the planet.
Conclusions
Before the singularity arrives, we need to sort out one thing … privacy and build trust in every element of our digital world.
-
YouTube interview: https://www.youtube.com/watch?v=FDn0Tkhi8zw
Yuriy Polyakov is the Vice President of Cryptography and a Principal Scientist at Duality Technologies. His research interests include applied lattice-based cryptography, fully homomorphic encryption, and privacy-preserving machine learning. He is also a co-founder of the open-source PALISADE Homomorphic Encryption Software Library, and a co-founder and project lead for OpenFHE.
-
Video interview: https://www.youtube.com/watch?v=59Y_kya4lR8
Kurt Rohloff is an Associate Professor of Computer Science at the New Jersey Institute of Technology (NJIT) and a co-founder and CTO of Duality Technologies. He is also a co-founder of the open-source PALISADE Homomorphic Encryption Software Library, and a co-founder of the OpenFHE library.
-
Thomas Prest is a cryptography researcher at PQShield and previously worked with Thales. He completed his PhD at the École Normale Supérieure and focuses on post-quantum cryptography and discrete algorithms. Thomas was one of the co-authors of the FALCON digital signature method and has published widely in related areas of PQC.
- Vis mere