Episoder
-
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
Original article:
https://arxiv.org/abs/2108.07258
Authors:
Bommasani et al.A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
The two tasks of supervised learning: regression and classification. Linear regression, loss functions, and gradient descent.
How much money will we make by spending more dollars on digital advertising? Will this loan applicant pay back the loan or not? What’s going to happen to the stock market tomorrow?
Original article:
https://medium.com/machine-learning-for-humans/supervised-learning-740383a2feab
Author:
Vishal MainiA podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
Manglende episoder?
-
Reinforcement learning from human feedback (RLHF) has emerged as a powerful technique for steering large language models (LLMs) toward desired behaviours. However, relying on simple human feedback doesn’t work for tasks that are too complex for humans to accurately judge at the scale needed to train AI models. Scalable oversight techniques attempt to address this by increasing the abilities of humans to give feedback on complex tasks.
This article briefly recaps some of the challenges faced with human feedback, and introduces the approaches to scalable oversight covered in session 4 of our AI Alignment course.
Source:
https://aisafetyfundamentals.com/blog/scalable-oversight-intro/
Narrated for AI Safety Fundamentals by Perrin WalkerA podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
Widely used alignment techniques, such as reinforcement learning from human feedback (RLHF), rely on the ability of humans to supervise model behavior—for example, to evaluate whether a model faithfully followed instructions or generated safe outputs. However, future superhuman models will behave in complex ways too difficult for humans to reliably evaluate; humans will only be able to weakly supervise superhuman models. We study an analogy to this problem: can weak model supervision elicit the full capabilities of a much stronger model? We test this using a range of pretrained language models in the GPT-4 family on natural language processing (NLP), chess, and reward modeling tasks. We find that when we naively fine-tune strong pretrained models on labels generated by a weak model, they consistently perform better than their weak supervisors, a phenomenon we call weak-to-strong generalization. However, we are still far from recovering the full capabilities of strong models with naive fine-tuning alone, suggesting that techniques like RLHF may scale poorly to superhuman models without further work.
We find that simple methods can often significantly improve weak-to-strong generalization: for example, when fine-tuning GPT-4 with a GPT-2-level supervisor and an auxiliary confidence loss, we can recover close to GPT-3.5-level performance on NLP tasks. Our results suggest that it is feasible to make empirical progress today on a fundamental challenge of aligning superhuman models.
Source:
https://arxiv.org/pdf/2312.09390.pdf
Narrated for AI Safety Fundamentals by Perrin WalkerA podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
By studying the connections between neurons, we can find meaningful algorithms in the weights of neural networks.
Many important transition points in the history of science have been moments when science “zoomed in.” At these points, we develop a visualization or tool that allows us to see the world in a new level of detail, and a new field of science develops to study the world through this lens.For example, microscopes let us see cells, leading to cellular biology. Science zoomed in. Several techniques including x-ray crystallography let us see DNA, leading to the molecular revolution. Science zoomed in. Atomic theory. Subatomic particles. Neuroscience. Science zoomed in.
These transitions weren’t just a change in precision: they were qualitative changes in what the objects of scientific inquiry are. For example, cellular biology isn’t just more careful zoology. It’s a new kind of inquiry that dramatically shifts what we can understand.
The famous examples of this phenomenon happened at a very large scale, but it can also be the more modest shift of a small research community realizing they can now study their topic in a finer grained level of detail.
Source:
https://distill.pub/2020/circuits/zoom-in/
Narrated for AI Safety Fundamentals by Perrin WalkerA podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
Using a sparse autoencoder, we extract a large number of interpretable features from a one-layer transformer.
Mechanistic interpretability seeks to understand neural networks by breaking them into components that are more easily understood than the whole. By understanding the function of each component, and how they interact, we hope to be able to reason about the behavior of the entire network. The first step in that program is to identify the correct components to analyze.
Unfortunately, the most natural computational unit of the neural network – the neuron itself – turns out not to be a natural unit for human understanding. This is because many neurons are polysemantic: they respond to mixtures of seemingly unrelated inputs. In the vision model Inception v1, a single neuron responds to faces of cats and fronts of cars . In a small language model we discuss in this paper, a single neuron responds to a mixture of academic citations, English dialogue, HTTP requests, and Korean text. Polysemanticity makes it difficult to reason about the behavior of the network in terms of the activity of individual neurons.
Source:
https://transformer-circuits.pub/2023/monosemantic-features/index.html
Narrated for AI Safety Fundamentals by Perrin WalkerA podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
Research in mechanistic interpretability seeks to explain behaviors of machine learning (ML) models in terms of their internal components. However, most previous work either focuses on simple behaviors in small models or describes complicated behaviors in larger models with broad strokes. In this work, we bridge this gap by presenting an explanation for how GPT-2 small performs a natural language task called indirect object identification (IOI). Our explanation encompasses 26 attention heads grouped into 7 main classes, which we discovered using a combination of interpretability approaches relying on causal interventions. To our knowledge, this investigation is the largest end-to-end attempt at reverse-engineering a natural behavior "in the wild" in a language model. We evaluate the reliability of our explanation using three quantitative criteria–faithfulness, completeness, and minimality. Though these criteria support our explanation, they also point to remaining gaps in our understanding. Our work provides evidence that a mechanistic understanding of large ML models is feasible, pointing toward opportunities to scale our understanding to both larger models and more complex tasks. Code for all experiments is available at https://github.com/redwoodresearch/Easy-Transformer.
Source:
https://arxiv.org/pdf/2211.00593.pdf
Narrated for AI Safety Fundamentals by Perrin WalkerA podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
Generative AI allows people to produce piles upon piles of images and words very quickly. It would be nice if there were some way to reliably distinguish AI-generated content from human-generated content. It would help people avoid endlessly arguing with bots online, or believing what a fake image purports to show. One common proposal is that big companies should incorporate watermarks into the outputs of their AIs. For instance, this could involve taking an image and subtly changing many pixels in a way that’s undetectable to the eye but detectable to a computer program. Or it could involve swapping words for synonyms in a predictable way so that the meaning is unchanged, but a program could readily determine the text was generated by an AI.
Unfortunately, watermarking schemes are unlikely to work. So far most have proven easy to remove, and it’s likely that future schemes will have similar problems.
Source:
https://transformer-circuits.pub/2023/monosemantic-features/index.html
Narrated for AI Safety Fundamentals by Perrin WalkerA podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
By Tom Everitt, Ryan Carey, Lewis Hammond, James Fox, Eric Langlois, and Shane Legg
About 2 years ago, we released the first few papers on understanding agent incentives using causal influence diagrams. This blog post will summarize progress made since then. What are causal influence diagrams? A key problem in AI alignment is understanding agent incentives. Concerns have been raised that agents may be incentivized to avoid correction, manipulate users, or inappropriately influence their learning. This is particularly worrying as training schemes often shape incentives in subtle and surprising ways. For these reasons, we’re developing a formal theory of incentives based on causal influence diagrams (CIDs).
Source:
https://deepmindsafetyresearch.medium.com/progress-on-causal-influence-diagrams-a7a32180b0d1
Narrated for AI Safety Fundamentals by TYPE III AUDIO.
---
A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
Richard Ngo compiles a number of resources for thinking about careers in alignment research.
Original text:
https://docs.google.com/document/d/1iFszDulgpu1aZcq_aYFG7Nmcr5zgOhaeSwavOMk1akw/edit#heading=h.4whc9v22p7tb
Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.
---
A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
Transformative artificial intelligence (TAI) may be a key factor in the long-run trajectory of civilization. A growing interdisciplinary community has begun to study how the development of TAI can be made safe and beneficial to sentient life (Bostrom 2014; Russell et al., 2015; OpenAI, 2018; Ortega and Maini, 2018; Dafoe, 2018). We present a research agenda for advancing a critical component of this effort: preventing catastrophic failures of cooperation among TAI systems. By cooperation failures we refer to a broad class of potentially-catastrophic inefficiencies in interactions among TAI-enabled actors. These include destructive conflict; coercion; and social dilemmas (Kollock, 1998; Macy and Flache, 2002) which destroy value over extended periods of time. We introduce cooperation failures at greater length in Section 1.1. Karnofsky (2016) defines TAI as ''AI that precipitates a transition comparable to (or more significant than) the agricultural or industrial revolution''. Such systems range from the unified, agent-like systems which are the focus of, e.g., Yudkowsky (2013) and Bostrom (2014), to the "comprehensive AI services’’ envisioned by Drexler (2019), in which humans are assisted by an array of powerful domain-specific AI tools. In our view, the potential consequences of such technology are enough to motivate research into mitigating risks today, despite considerable uncertainty about the timeline to TAI (Grace et al., 2018) and nature of TAI development.
Original text:
https://www.alignmentforum.org/s/p947tK8CoBbdpPtyK/p/KMocAf9jnAKc2jXri
Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.
---
A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
MIRI is releasing a paper introducing a new model of deductively limited reasoning: “Logical induction,” authored by Scott Garrabrant, Tsvi Benson-Tilsen, Andrew Critch, myself, and Jessica Taylor. Readers may wish to start with the abridged version.
Consider a setting where a reasoner is observing a deductive process (such as a community of mathematicians and computer programmers) and waiting for proofs of various logical claims (such as the abc conjecture, or “this computer program has a bug in it”), while making guesses about which claims will turn out to be true. Roughly speaking, our paper presents a computable (though inefficient) algorithm that outpaces deduction, assigning high subjective probabilities to provable conjectures and low probabilities to disprovable conjectures long before the proofs can be produced. This algorithm has a large number of nice theoretical properties. Still speaking roughly, the algorithm learns to assign probabilities to sentences in ways that respect any logical or statistical pattern that can be described in polynomial time. Additionally, it learns to reason well about its own beliefs and trust its future beliefs while avoiding paradox. Quoting from the abstract: "These properties and many others all follow from a single logical induction criterion, which is motivated by a series of stock trading analogies. Roughly speaking, each logical sentence φ is associated with a stock that is worth $1 per share if φ is true and nothing otherwise, and we interpret the belief-state of a logically uncertain reasoner as a set of market prices, where ℙn(φ)=50% means that on day n, shares of φ may be bought or sold from the reasoner for 50¢. The logical induction criterion says (very roughly) that there should not be any polynomial-time computable trading strategy with finite risk tolerance that earns unbounded profits in that market over time."
Original text:
https://intelligence.org/2016/09/12/new-paper-logical-induction/
Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.
---
A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
Suppose you want to build a robot to achieve some real-world goal for you—a goal that requires the robot to learn for itself and figure out a lot of things that you don’t already know. There’s a complicated engineering problem here. But there’s also a problem of figuring out what it even means to build a learning agent like that. What is it to optimize realistic goals in physical environments? In broad terms, how does it work? In this series of posts, I’ll point to four ways we don’t currently know how it works, and four areas of active research aimed at figuring it out. This is Alexei, and Alexei is playing a video game. Like most games, this game has clear input and output channels. Alexei only observes the game through the computer screen, and only manipulates the game through the controller. The game can be thought of as a function which takes in a sequence of button presses and outputs a sequence of pixels on the screen. Alexei is also very smart, and capable of holding the entire video game inside his mind.
Original text:
https://intelligence.org/2018/10/29/embedded-agents/
Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.
---
A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
Abstract:
Neural network models have a reputation for being black boxes. We propose to monitor the features at every layer of a model and measure how suitable they are for classification. We use linear classifiers, which we refer to as "probes", trained entirely independently of the model itself.
This helps us better understand the roles and dynamics of the intermediate layers. We demonstrate how this can be used to develop a better intuition about models and to diagnose potential problems.
We apply this technique to the popular models Inception v3 and Resnet-50. Among other things, we observe experimentally that the linear separability of features increase monotonically along the depth of the model.
Original text:
https://arxiv.org/pdf/1610.01644.pdf
Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.
---
A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
There is a growing sense that neural networks need to be interpretable to humans. The field of neural network interpretability has formed in response to these concerns. As it matures, two major threads of research have begun to coalesce: feature visualization and attribution. This article focuses on feature visualization. While feature visualization is a powerful tool, actually getting it to work involves a number of details. In this article, we examine the major issues and explore common approaches to solving them. We find that remarkably simple methods can produce high-quality visualizations. Along the way we introduce a few tricks for exploring variation in what neurons react to, how they interact, and how to improve the optimization process.
Original text:
https://distill.pub/2017/feature-visualization/
Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.
---
A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
Abstract:
What is learned by sophisticated neural network agents such as AlphaZero? This question is of both scientific and practical interest. If the representations of strong neural networks bear no resemblance to human concepts, our ability to understand faithful explanations of their decisions will be restricted, ultimately limiting what we can achieve with neural network interpretability. In this work we provide evidence that human knowledge is acquired by the AlphaZero neural network as it trains on the game of chess. By probing for a broad range of human chess concepts we show when and where these concepts are represented in the AlphaZero network. We also provide a behavioural analysis focusing on opening play, including qualitative analysis from chess Grandmaster Vladimir Kramnik. Finally, we carry out a preliminary investigation looking at the low-level details of AlphaZero's representations, and make the resulting behavioural and representational analyses available online.
Original text:
https://arxiv.org/abs/2111.09259
Narrated for AI Safety Fundamentals by TYPE III AUDIO.
---
A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
With the benefit of hindsight, we have a better sense of our takeaways from our first adversarial training project (paper). Our original aim was to use adversarial training to make a system that (as far as we could tell) never produced injurious completions. If we had accomplished that, we think it would have been the first demonstration of a deep learning system avoiding a difficult-to-formalize catastrophe with an ultra-high level of reliability. Presumably, we would have needed to invent novel robustness techniques that could have informed techniques useful for aligning TAI. With a successful system, we also could have performed ablations to get a clear sense of which building blocks were most important. Alas, we fell well short of that target. We still saw failures when just randomly sampling prompts and completions. Our adversarial training didn’t reduce the random failure rate, nor did it eliminate highly egregious failures (example below). We also don’t think we've successfully demonstrated a negative result, given that our results could be explained by suboptimal choices in our training process. Overall, we’d say this project had value as a learning experience but produced much less alignment progress than we hoped.
Source:
https://www.alignmentforum.org/posts/n3LAgnHg6ashQK3fF/takeaways-from-our-robust-injury-classifier-project-redwood
Narrated for AI Safety Fundamentals by TYPE III AUDIO.
---
A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
(Update: We think the tone of this post was overly positive considering our somewhat weak results. You can read our latest post with more takeaways and followup results here.)
This post motivates and summarizes this paper from Redwood Research, which presents results from the project first introduced here. We used adversarial training to improve high-stakes reliability in a task (“filter all injurious continuations of a story”) that we think is analogous to work that future AI safety engineers will need to do to reduce the risk of AI takeover. We experimented with three classes of adversaries – unaugmented humans, automatic paraphrasing, and humans augmented with a rewriting tool – and found that adversarial training was able to improve robustness to these three adversaries without affecting in-distribution performance. We think this work constitutes progress towards techniques that may substantially reduce the likelihood of deceptive alignment.
Motivation Here are two dimensions along which you could simplify the alignment problem (similar to the decomposition at the top of this post): 1. Low-stakes (but difficult to oversee): Only consider domains where each decision that an AI makes is low-stakes, so no single action can have catastrophic consequences. In this setting, the key challenge is to correctly oversee the actions that AIs take, such that humans remain in control over time. 2. Easy oversight (but high-stakes): Only consider domains where overseeing AI behavior is easy, meaning that it is straightforward to run an oversight process that can assess the goodness of any particular action.
Source:
https://www.alignmentforum.org/posts/A9tJFJY7DsGTFKKkh/high-stakes-alignment-via-adversarial-training-redwood
Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.
---
A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
Decision theories differ on exactly how to calculate the expectation--the probability of an outcome, conditional on an action. This foundational difference bubbles up to real-life questions about whether to vote in elections, or accept a lowball offer at the negotiating table. When you're thinking about what happens if you don't vote in an election, should you calculate the expected outcome as if only your vote changes, or as if all the people sufficiently similar to you would also decide not to vote? Questions like these belong to a larger class of problems, Newcomblike decision problems, in which some other agent is similar to us or reasoning about what we will do in the future. The central principle of 'logical decision theories', several families of which will be introduced, is that we ought to choose as if we are controlling the logical output of our abstract decision algorithm. Newcomblike considerations--which might initially seem like unusual special cases--become more prominent as agents can get higher-quality information about what algorithms or policies other agents use: Public commitments, machine agents with known code, smart contracts running on Ethereum. Newcomblike considerations also become more important as we deal with agents that are very similar to one another; or with large groups of agents that are likely to contain high-similarity subgroups; or with problems where even small correlations are enough to swing the decision. In philosophy, the debate over decision theories is seen as a debate over the principle of rational choice. Do 'rational' agents refrain from voting in elections, because their one vote is very unlikely to change anything? Do we need to go beyond 'rationality', into 'social rationality' or 'superrationality' or something along those lines, in order to describe agents that could possibly make up a functional society?
Original text:
https://arbital.com/p/logical_dt/?l=5d6
Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.
---
A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. -
This is an update on the work on AI Safety via Debate that we previously wrote about here.
What we did:
We tested the debate protocol introduced in AI Safety via Debate with human judges and debaters. We found various problems and improved the mechanism to fix these issues (details of these are in the appendix). However, we discovered that a dishonest debater can often create arguments that have a fatal error, but where it is very hard to locate the error. We don’t have a fix for this “obfuscated argument” problem, and believe it might be an important quantitative limitation for both IDA and Debate.
Key takeaways and relevance for alignment:
Our ultimate goal is to find a mechanism that allows us to learn anything that a machine learning model knows: if the model can efficiently find the correct answer to some problem, our mechanism should favor the correct answer while only requiring a tractable number of human judgements and a reasonable number of computation steps for the model. We’re working under a hypothesis that there are broadly two ways to know things: via step-by-step reasoning about implications (logic, computation…), and by learning and generalizing from data (pattern matching, bayesian updating…).
Original text:
https://www.alignmentforum.org/posts/PJLABqQ962hZEqhdB/debate-update-obfuscated-arguments-problem
Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.
---
A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website. - Vis mere