Folgen
-
Today, we're joined by Abhijit Bose, head of enterprise AI and ML platforms at Capital One to discuss the evolution of the company’s approach and insights on Generative AI and platform best practices. In this episode, we dig into the company’s platform-centric approach to AI, and how they’ve been evolving their existing MLOps and data platforms to support the new challenges and opportunities presented by generative AI workloads and AI agents. We explore their use of cloud-based infrastructure—in this case on AWS—to provide a foundation upon which they then layer open-source and proprietary services and tools. We cover their use of Llama 3 and open-weight models, their approach to fine-tuning, their observability tooling for Gen AI applications, their use of inference optimization techniques like quantization, and more. Finally, Abhijit shares the future of agentic workflows in the enterprise, the application of OpenAI o1-style reasoning in models, and the new roles and skillsets required in the evolving GenAI landscape.
The complete show notes for this episode can be found at https://twimlai.com/go/714. -
Today, we're joined by Dan Jeffries, founder and CEO of Kentauros AI to discuss the challenges currently faced by those developing advanced AI agents. We dig into how Dan defines agents and distinguishes them from other similar uses of LLM, explore various use cases for them, and dig into ways to create smarter agentic systems. Dan shared his “big brain, little brain, tool brain” approach to tackling real-world challenges in agents, the trade-offs in leveraging general-purpose vs. task-specific models, and his take on LLM reasoning. We also cover the way he thinks about model selection for agents, along with the need for new tools and platforms for deploying them. Finally, Dan emphasizes the importance of open source in advancing AI, shares the new products they’re working on, and explores the future directions in the agentic era.
The complete show notes for this episode can be found at https://twimlai.com/go/713. -
Fehlende Folgen?
-
Today, we're joined by Byron Cook, VP and distinguished scientist in the Automated Reasoning Group at AWS to dig into the underlying technology behind the newly announced Automated Reasoning Checks feature of Amazon Bedrock Guardrails. Automated Reasoning Checks uses mathematical proofs to help LLM users safeguard against hallucinations. We explore recent advancements in the field of automated reasoning, as well as some of the ways it is applied broadly, as well as across AWS, where it is used to enhance security, cryptography, virtualization, and more. We discuss how the new feature helps users to generate, refine, validate, and formalize policies, and how those policies can be deployed alongside LLM applications to ensure the accuracy of generated text. Finally, Byron also shares the benchmarks they’ve applied, the use of techniques like ‘constrained coding’ and ‘backtracking,’ and the future co-evolution of automated reasoning and generative AI.
The complete show notes for this episode can be found at https://twimlai.com/go/712. -
Today, we're joined by Arash Behboodi, director of engineering at Qualcomm AI Research to discuss the papers and workshops Qualcomm will be presenting at this year’s NeurIPS conference. We dig into the challenges and opportunities presented by differentiable simulation in wireless systems, the sciences, and beyond. We also explore recent work that ties conformal prediction to information theory, yielding a novel approach to incorporating uncertainty quantification directly into machine learning models. Finally, we review several papers enabling the efficient use of LoRA (Low-Rank Adaptation) on mobile devices (Hollowed Net, ShiRA, FouRA). Arash also previews the demos Qualcomm will be hosting at NeurIPS, including new video editing diffusion and 3D content generation models running on-device, Qualcomm's AI Hub, and more!
The complete show notes for this episode can be found at https://twimlai.com/go/711. -
Today, we're joined by Shirley Wu, senior director of software engineering at Juniper Networks to discuss how machine learning and artificial intelligence are transforming network management. We explore various use cases where AI and ML are applied to enhance the quality, performance, and efficiency of networks across Juniper’s customers, including diagnosing cable degradation, proactive monitoring for coverage gaps, and real-time fault detection. We also dig into the complexities of integrating data science into networking, the trade-offs between traditional methods and ML-based solutions, the role of feature engineering and data in networking, the applicability of large language models, and Juniper’s approach to using smaller, specialized ML models to optimize speed, latency, and cost. Finally, Shirley shares some future directions for Juniper Mist such as proactive network testing and end-user self-service.
The complete show notes for this episode can be found at https://twimlai.com/go/710. -
Today, we're joined by Jason Liu, freelance AI consultant, advisor, and creator of the Instructor library to discuss all things retrieval-augmented generation (RAG). We dig into the tactical and strategic challenges companies face with their RAG system, the different signs Jason looks for to identify looming problems, the issues he most commonly encounters, and the steps he takes to diagnose these issues. We also cover the significance of building out robust test datasets, data-driven experimentation, evaluation tools, and metrics for different use cases. We also touched on fine-tuning strategies for RAG systems, the effectiveness of different chunking strategies, the use of collaboration tools like Braintrust, and how future models will change the game. Lastly, we cover Jason’s interest in teaching others how to capitalize on their own AI experience via his AI consulting course.
The complete show notes for this episode can be found at https://twimlai.com/go/709. -
Today we're joined by Sunil Mallya, CTO and co-founder of Flip AI. We discuss Flip’s incident debugging system for DevOps, which was built using a custom mixture of experts (MoE) large language model (LLM) trained on a novel "CoMELT" observability dataset which combines traditional MELT data—metrics, events, logs, and traces—with code to efficiently identify root failure causes in complex software systems. We discuss the challenges of integrating time-series data with LLMs and their multi-decoder architecture designed for this purpose. Sunil describes their system's agent-based design, focusing on clear roles and boundaries to ensure reliability. We examine their "chaos gym," a reinforcement learning environment used for testing and improving the system's robustness. Finally, we discuss the practical considerations of deploying such a system at scale in diverse environments and much more.
The complete show notes for this episode can be found at https://twimlai.com/go/708. -
Today, we're joined by Scott Stephenson, co-founder and CEO of Deepgram to discuss voice AI agents. We explore the importance of perception, understanding, and interaction and how these key components work together in building intelligent AI voice agents. We discuss the role of multimodal LLMs as well as speech-to-text and text-to-speech models in building AI voice agents, and dig into the benefits and limitations of text-based approaches to voice interactions. We dig into what’s required to deliver real-time voice interactions and the promise of closed-loop, continuously improving, federated learning agents. Finally, Scott shares practical applications of AI voice agents at Deepgram and provides an overview of their newly released agent toolkit.
The complete show notes for this episode can be found at https://twimlai.com/go/707. -
Today, we're joined by Tim Rocktäschel, senior staff research scientist at Google DeepMind, professor of Artificial Intelligence at University College London, and author of the recently published popular science book, “Artificial Intelligence: 10 Things You Should Know.” We dig into the attainability of artificial superintelligence and the path to achieving generalized superhuman capabilities across multiple domains. We discuss the importance of open-endedness in developing autonomous and self-improving systems, as well as the role of evolutionary approaches and algorithms. Additionally, we cover Tim’s recent research projects such as “Promptbreeder,” “Debating with More Persuasive LLMs Leads to More Truthful Answers,” and more.
The complete show notes for this episode can be found at https://twimlai.com/go/706. -
Today, we're joined by Lucas García, principal product manager for deep learning at MathWorks to discuss incorporating ML models into safety-critical systems. We begin by exploring the critical role of verification and validation (V&V) in these applications. We review the popular V-model for engineering critical systems and then dig into the “W” adaptation that’s been proposed for incorporating ML models. Next, we discuss the complexities of applying deep learning neural networks in safety-critical applications using the aviation industry as an example, and talk through the importance of factors such as data quality, model stability, robustness, interpretability, and accuracy. We also explore formal verification methods, abstract transformer layers, transformer-based architectures, and the application of various software testing techniques. Lucas also introduces the field of constrained deep learning and convex neural networks and its benefits and trade-offs.
The complete show notes for this episode can be found at https://twimlai.com/go/705. -
Today, we're joined by Arvind Narayanan, professor of Computer Science at Princeton University to discuss his recent works, AI Agents That Matter and AI Snake Oil. In “AI Agents That Matter”, we explore the range of agentic behaviors, the challenges in benchmarking agents, and the ‘capability and reliability gap’, which creates risks when deploying AI agents in real-world applications. We also discuss the importance of verifiers as a technique for safeguarding agent behavior. We then dig into the AI Snake Oil book, which uncovers examples of problematic and overhyped claims in AI. Arvind shares various use cases of failed applications of AI, outlines a taxonomy of AI risks, and shares his insights on AI’s catastrophic risks. Additionally, we also touched on different approaches to LLM-based reasoning, his views on tech policy and regulation, and his work on CORE-Bench, a benchmark designed to measure AI agents' accuracy in computational reproducibility tasks.
The complete show notes for this episode can be found at https://twimlai.com/go/704. -
Today, we're joined by Shreya Shankar, a PhD student at UC Berkeley to discuss DocETL, a declarative system for building and optimizing LLM-powered data processing pipelines for large-scale and complex document analysis tasks. We explore how DocETL's optimizer architecture works, the intricacies of building agentic systems for data processing, the current landscape of benchmarks for data processing tasks, how these differ from reasoning-based benchmarks, and the need for robust evaluation methods for human-in-the-loop LLM workflows. Additionally, Shreya shares real-world applications of DocETL, the importance of effective validation prompts, and building robust and fault-tolerant agentic systems. Lastly, we cover the need for benchmarks tailored to LLM-powered data processing tasks and the future directions for DocETL.
The complete show notes for this episode can be found at https://twimlai.com/go/703. -
Today, we're joined by Nicholas Carlini, research scientist at Google DeepMind to discuss adversarial machine learning and model security, focusing on his 2024 ICML best paper winner, “Stealing part of a production language model.” We dig into this work, which demonstrated the ability to successfully steal the last layer of production language models including ChatGPT and PaLM-2. Nicholas shares the current landscape of AI security research in the age of LLMs, the implications of model stealing, ethical concerns surrounding model privacy, how the attack works, and the significance of the embedding layer in language models. We also discuss the remediation strategies implemented by OpenAI and Google, and the future directions in the field of AI security. Plus, we also cover his other ICML 2024 best paper, “Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining,” which questions the use and promotion of differential privacy in conjunction with pre-trained models.
The complete show notes for this episode can be found at https://twimlai.com/go/702. -
Today, we're joined by Simon Willison, independent researcher and creator of Datasette to discuss the many ways software developers and engineers can take advantage of large language models (LLMs) to boost their productivity. We dig into Simon’s own workflows and how he uses popular models like ChatGPT and Anthropic’s Claude to write and test hundreds of lines of code while out walking his dog. We review Simon’s favorite prompting and debugging techniques, his strategies for sidestepping the limitations of contemporary models, how he uses Claude’s Artifacts feature for rapid prototyping, his thoughts on the use and impact of vision models, the role he sees for open source models and local LLMs, and much more.
The complete show notes for this episode can be found at https://twimlai.com/go/701. -
Today, we're joined by Shengran Hu, a PhD student at the University of British Columbia, to discuss Automated Design of Agentic Systems (ADAS), an approach focused on automatically creating agentic system designs. We explore the spectrum of agentic behaviors, the motivation for learning all aspects of agentic system design, the key components of the ADAS approach, and how it uses LLMs to design novel agent architectures in code. We also cover the iterative process of ADAS, its potential to shed light on the behavior of foundation models, the higher-level meta-behaviors that emerge in agentic systems, and how ADAS uncovers novel design patterns through emergent behaviors, particularly in complex tasks like the ARC challenge. Finally, we touch on the practical applications of ADAS and its potential use in system optimization for real-world tasks.
The complete show notes for this episode can be found at https://twimlai.com/go/700. -
Today, we're joined by Peter van der Putten, director of the AI Lab at Pega and assistant professor of AI at Leiden University. We discuss the newly adopted European AI Act and the challenges of applying academic fairness metrics in real-world AI applications. We dig into the key ethical principles behind the Act, its broad definition of AI, and how it categorizes various AI risks. We also discuss the practical challenges of implementing fairness and bias metrics in real-world scenarios, and the importance of a risk-based approach in regulating AI systems. Finally, we cover how the EU AI Act might influence global practices, similar to the GDPR's effect on data privacy, and explore strategies for closing bias gaps in real-world automated decision-making.
The complete show notes for this episode can be found at https://twimlai.com/go/699. -
Today, we're joined by Harrison Chase, co-founder and CEO of LangChain to discuss LLM frameworks, agentic systems, RAG, evaluation, and more. We dig into the elements of a modern LLM framework, including the most productive developer experiences and appropriate levels of abstraction. We dive into agents and agentic systems as well, covering the “spectrum of agenticness,” cognitive architectures, and real-world applications. We explore key challenges in deploying agentic systems, and the importance of agentic architectures as a means of communication in system design and operation. Additionally, we review evolving use cases for RAG, and the role of observability, testing, and evaluation tools in moving LLM applications from prototype to production. Lastly, Harrison shares his hot takes on prompting, multi-modal models, and more!
The complete show notes for this episode can be found at https://twimlai.com/go/698. -
Today, we're joined by Siddhika Nevrekar, AI Hub head at Qualcomm Technologies, to discuss on-device AI and how to make it easier for developers to take advantage of device capabilities. We unpack the motivations for AI engineers to move model inference from the cloud to local devices, and explore the challenges associated with on-device AI. We dig into the role of hardware solutions, from powerful system-on-chips (SoC) to neural processors, the importance of collaboration between community runtimes like ONNX and TFLite and chip manufacturers, the unique challenges of IoT and autonomous vehicles, and the key metrics developers should focus on to ensure optimal on-device performance. Finally, Siddhika introduces Qualcomm's AI Hub, a platform developed to simplify the process of testing and optimizing AI models across different devices.
The complete show notes for this episode can be found at https://twimlai.com/go/697. -
Today, we're joined by Ashley Edwards, a member of technical staff at Runway, to discuss Genie: Generative Interactive Environments, a system for creating ‘playable’ video environments for training deep reinforcement learning (RL) agents at scale in a completely unsupervised manner. We explore the motivations behind Genie, the challenges of data acquisition for RL, and Genie’s capability to learn world models from videos without explicit action data, enabling seamless interaction and frame prediction. Ashley walks us through Genie’s core components—the latent action model, video tokenizer, and dynamics model—and explains how these elements collaborate to predict future frames in video sequences. We discuss the model architecture, training strategies, benchmarks used, as well as the application of spatiotemporal transformers and the MaskGIT techniques used for efficient token prediction and representation. Finally, we touched on Genie’s practical implications, its comparison to other video generation models like “Sora,” and potential future directions in video generation and diffusion models.
The complete show notes for this episode can be found at https://twimlai.com/go/696. -
Today, we're joined by Marius Memmel, a PhD student at the University of Washington, to discuss his research on sim-to-real transfer approaches for developing autonomous robotic agents in unstructured environments. Our conversation focuses on his recent ASID and URDFormer papers. We explore the complexities presented by real-world settings like a cluttered kitchen, data acquisition challenges for training robust models, the importance of simulation, and the challenge of bridging the sim2real gap in robotics. Marius introduces ASID, a framework designed to enable robots to autonomously generate and refine simulation models to improve sim-to-real transfer. We discuss the role of Fisher information as a metric for trajectory sensitivity to physical parameters and the importance of exploration and exploitation phases in robot learning. Additionally, we cover URDFormer, a transformer-based model that generates URDF documents for scene and object reconstruction to create realistic simulation environments.
The complete show notes for this episode can be found at https://twimlai.com/go/695. - Mehr anzeigen